A MAGNA
‘u RIGHTWARE

Automated Testing of a Kanzi-based HMI with TTA

MAGNA Telemotive GmbH and Rightware Oy

By Manuel Zimmermann, Senior Software Engineer HMI, Magna Telemotive,
Rebekka Haisch, Product Manager Software Solutions, Magna Telemotive,
and Derek Sellin, Vice President, Marketing, Rightware

AUTOMATED TESTING O D HMIWITH TTA

Abstract

Rightware and Magna Telemotive cooperate in the development and validation of automotive
human machine interfaces (HMI), especially for instrument clusters. Magna Telemotive has
developed an innovative HMI framework and integrated it into the Kanzi tool chain. Before
releasing the HMI software, it is validated with the test automation framework Telemotive Test
Automation (TTA). The process from developing the HMI framework to connecting it to Kanzi and
finally validating the graphical output is described in this whitepaper.

Keywords: HMI development, Kanzi, HMI framework, test automation, Telemotive Test
Automation (TTA)

Contents

ADSTIACT ... 2
TN o Yo LU o3 4 o] o I 3
The development of Magna Telemotive’s reference HMI 3
The decCisSion fOr KaNZi.......coooeeiiiii e 5
TeSHING WITN T T A L et 7

CON CIUST ON e e e e e e e e 10

D HMIWITH TTA

AUTOMATED TESTING O

Introduction

In-vehicle display systems - particularly the instrument cluster - are increasingly becoming
a service partner for the driver. MAGNA Telemotive develops and improves such display
systems. Since 2012, many original equipment manufacturers (OEM) and component
suppliers have used Rightware’s Kanzi user interface (Ul) software for the development
of human machine interface (HMI) components. Magna Telemotive has identified an
opportunity to complement the Kanzi offering with its proprietary test automation solution
Telemotive Test Automation (TTA) that uses APIs available in Kanzi.

Magna Telemotive’s existing proprietary HMI framework has been connected with Kanzi
in order to develop a reference automotive HMI. At the same time, the HMI functions are
validated with the test automation framework TTA. The development and validation
process will be explained in the following.

The development of Magna Telemotive’s
reference HMI

To be able to develop various HMIs for various OEMs, Magna Telemotive has developed
its own HMI framework with a code generator. This HMI has been developed as an
innovative reference HMI in which many common HMI features are presented in a Magna
Telemotive-specific design. One big advantage of the framework is that it can be
connected to different graphic engines. It manages the module and signal structure via
configuration files, which guarantees a good overview and maintainability.

signalname type min max step default invalid description

VehicleStatelntern uint8 0 3 0 40: off 1: welcome 2: driving 3: goodbye

IsElectro bool false true false false Electro (true) or Combustion (false) engine

[cearld Juints 0 4 0 40: P (park), 1: R (reverse), 2: N (neutral); 3: D (drive); 4: invalid/unknown
SpeedKmh uintl6 0 2400 0 Ospeed in km/h, must be devided by 10

PowerCombustion uintlé 0 6000 0 Onumber of U/min

PowerElectro sintlé -1000 1000 0 0 positiv is power up to 100% (1000), negative is charge up to 100% (-1000)
ChargingLevel uintl6 0 1000 0 10001000 is 100%, fuel for combustion or battery for electro
TelltaleDirectionIndicatorLeft bool false true false false false: off, true: on

TelltaleDirectionIndicatorRightbool false true false false false: off, true: on

TelltaleLightLongDistance bool false true false false false: off, true: on

TelltaleHeatingWindshield bool false ftrue false false false: off, true: on

TelltaleWarningSeatbelt bool false true false false false: off, true: on

TelltaleWarningPressure bool false true false false false: off, true: on

TelltaleAbs bool false true false false false: off, true: on

TelltaleBatteryCar bool false true false false false: off, true: on

TelltaleHandbrake bool false true false false false: off, true: on

TelltaleCruiseControl bool false true false false false: off, true: on

TimeHour uint8 0 23 0 00h .. 23h

TimeMinutes uint8 0 59 0 00m .. 59m

Figure 1: Screenshot of the configuration file

AUTOMATED TESTING O D HMIWITH TTA

The code generator verifies if the configuration files are valid and creates basic classes
for the modules, which results in a minimal manual programming effort. It also visualizes
the signal flow and thus shows which signals enter which modules and which widgets
show something in the end. A part of the clear signal flow visualization can be seen in
Figure 2.

[SpeedNormed (Boe)y—————— [WigeSpeed
PrsSpeed || —————»{ SpeodValueSt sring)
‘\\ B
SpeedUnitStr cmm@)"“H
Gearld (uint®) > - WidgetGear
T

—— PrePower PowerNormed (float)
PowerElectro (&illﬂé]/' T WidgetPower

| ChargingLevelNormed (float)

/ : WidgetChargingLevel
PreChargingl evel —h-i Charginglevel ValueStr (SWV
\

| ChargingLevelUnitStr (string)

WidgetSpeedDigital

i
]
g
T

ChargingLevel (uint16)

RemainingR angeValueStr (stin‘gj\ WidgetRemainingR ange
| RemainingRangeKm (uint1 & PreRemainingRange T
'[RemainingR angelUnitStr (string)
| TempCombElValueStr (string) L WidgetTempCombEl

_— __,_._.---"'""—’
TempCombEl (zint16) PreTempCombElL
™ TempCombEIUnitStr (string)>

Figure 2: A part of the signal flow visualization

Moreover, code can be generated either for C++ (e.g. for visualization via Kanzi) or for
C# (e.g. for visualization via Unity), thus ensuring that the framework is easily adaptable
to various graphic engines.

For the input signals, the code generator creates a HTML5 simulation interface, which
comprises a big advantage in the prototyping phase. There, the single feature states can
be controlled by dragging a slider of different input signals. The information from the input
signals is queried by the HMI framework and built up dynamically in HTML. Data storage
only happens in the HMI framework.

Update Signaloverview

Toggle Standalone

Reset Signals to
Default

[o —

_

=

0

0

0

0

0

0

0

0 R
.-

Fav

e o

Bits

[
t
I

Figure 3: Screenshot of the HTML simulation interface

Moreover, a demo mode which animates all existing features is available. These are
random animations, which are useful to get a quick overview of all implemented features
and their behavior. In addition, the simulation interface creates an animation of input
signals across different devices via a web socket connection. For example, a release on
an Android device can be controlled from the computer if both devices are in the same
network.

To sum up, the HMI has been developed in an innovative and open manner. It is largely
independent of graphics engines and programming languages, i.e. it can be linked to new
graphics engines (previously Kanzi and Unity) and ported to other programming
languages (previously C++ and C#) with ease. Finally, the possibility to control the HMI
framework via HTMLS5 is a big advantage in the prototyping phase.

The decision for Kanzi KANZI

Kanzi is a software tool chain developed by Rightware for designing and developing user
interfaces, from early prototyping through to series production. It offers a high-
performance rendering engine and Ul framework with dedicated tools for designers and
developers. Kanzi decouples design from application logic, allowing Ul components,
plugins, and application code to be reused across HMI projects and platforms. The Kanzi
Ul solution comprises Kanzi Studio, a PC-based Ul editor with real-time preview, and

-
AUTOMATED TESTING OF A KANZI-BASED HMI WITH TTA

AUTOMATED TESTING O

D HMIWITH TTA

Kanzi Runtime, a cross-platform C++ APl and Ul framework for application development

and platform integration.

240

200,

> 4% 12050,

& =0

A P Mdanchen

Dienstag, 18112019
®,
g 40 ==
&, o
| _onn]

Illo
| |

Figure 4: Overview of the Kanzi Studio application at Magna Telemotive

Magna Telemotive has connected the proprietary HMI framework to Kanzi Runtime,
which allows for loading and accessing the pre-exported *.kzb files. The animations have
been created in Kanzi Studio and the developed HMI graphics have been placed there.
Then, an asset could be played out of Kanzi Studio (*.kzb), which contains the graphics

as well as additional logic-like animations.

Kanzi has been chosen for HMI development because it is very simple to import graphical
assets in standard formats (e.g. Photoshop, 3D models). The configurable state
managers within Kanzi are used and the animations can be configured and played during

the design process, based on the live preview capability built into Kanzi Studio.

on Assets ® State Tools - Gear

Transition Editor nage DrivingPageTube.DrivingPageTubePrefab.Gear.5tate + + Create State Group

Any —- Any
P M D invalid

+ Create Transition

Figure 5: Definition of the different states for the example gear

AUTOMATED TESTING O D HMIWITH TTA

Another advantage of Kanzi is that the content of the graphical assets can be easily
controlled via the API.

Testing with TTA teLemotive

SOfFtWaReE soLutionNs

The innovative HMI developed with Kanzi can be tested with the Python test automation
framework Telemotive Test Automation (TTA), which allows the flexible and quick
creation of test cases. With this tool, based on Python 3, developers can use open-source
packages and benefit from elaborate reporting with clear visualization. TTA can be
connected to any hardware or software, and thus facilitates the testing of embedded
systems. Thanks to its open-source approach, tools for testing web interfaces and
backends can be connected just as well. REST APIs can be used to connect not only the
software under test in the development process but also any existing software tools. TTA
can fill any gap in the automated tool chain. Writing test cases is child’s play since TTA
uses the Python syntax. Pre-assembled units, sample code, and easy-to-apply test case
implementations support a straightforward learning process for new users as well as
accelerated development cycles. Telemotive Test Automation is continuously improved
to keep up with the market and can be customized for individual requirements.

Controlling the Kanzi-based HMI with TTA is fairly simple via the socket connection. For
testing the Kanzi HMI, TTA reads back and verifies the graphical output. TTA checks if
the HMI is displaying the correct signals and graphics with some special units such as
image processing or the OCR unit. It therefore takes screenshots (or uses a frame
grabber if a real head unit is being tested) of a specific part of the HMI and searches for
specific symbols such as speed limit signs, as can be seen in Figure 6.

Figure 6: TTA recognizes the traffic sign

The tests always follow a schema:

1. Search for the predefined pixel area
2. Take a screenshot of this area
3. Compare the image with the expected result (reference image).

Image recognition is used to check if the traffic signs, here the speed limit sign of 30 km/h,
are recognized correctly and correspond to the template. Subsequently, a detailed test
report is provided, as shown in Figure 7.

AUTOMATED TESTING O D HMIWITH TTA

ID Start Time Duration Result

step_01_check_for_30_speed None 13:14:09.486136 15.75s =il

Description: Check if speed is recognized correctly

Expected Result: True (30km/h shield matches over 0.99)

Actual Result: True

found:

threshold: 0.989648282527924

Assert: Trueis True

(self.assertTrue(res[2] = 0.95))
img:
template:

Figure 7: Test report for verification of 30 km/h speed sign

The OCR unit has implemented an open-source Python OCR package, which checks if
a text is displayed correctly. The text in this screenshot is read out and compared to the
expected result.

In the example in Figure 8, the location is checked if it shows the current location
“Munich”.

AUTOMATED TESTING O

D HMIWITH TTA

Start Time Duration Result
step_01_get_location None 13:12:01.379082 15.51s | zeiss=l]

Description: Check if location matches expected value
Expected Result: $text == [Munich']

Actual Result: ['Munich'] == [Munich’]
is True

img:

location: .
unich

Assert: text = [Munich’]
self assertActual(text=loc_text)
step_03_set_speed None 13:12:20.220257 12.12s [zhlas:]
Description: Ramp up speed to 200 and revs to 5000

Expected Result: $speed == 200
Actual Result: 200 ==200

1s True
img:
kmh_img:
Assert: speed = 200
self assertActual(speed=kmh_value)
step_05_check_control_en None 13:12:37.919262 4.79s | 251
Description: Check if Check Control Message matches expected value

Expected Result: Engine overheated! Please stop
Actual Result: Engine overheated! Please stop

img:

cc_img: Engine overheated! Please
stop.

Assert: Engine overheated! Please stop. == Engine overheated! Please stop.
(self assertEqual('Engine overheated! Please stop.', " " join(cc_text)))

Figure 8: OCR is reading out the location, speed and control message

AUTOMATED TESTING O D HMIWITH TTA

Then TTA ramps up the current speed to 200 km/h and checks the result. Moreover, the
control messages at the top of the HMI are read out and compared to the expected result,
which should be “Engine overheated! Please stop.” TTA has implemented several
language packs, thus it can be used in any part of the world.

Conclusion

With Rightware’s Kanzi software, Magna Telemotive has found an easy-to-integrate
solution for developing a reference automotive HMI. Compared to Unity, a big advantage
of Kanzi is that it is a graphics engine designed for HMI development in the automotive
industry. Unity, on the other hand, is a game engine that may spread into the automotive
sector in the next few years, but has so far been used more for prototypes or concepts
than for series development.

With Magna Telemotive’s HMI framework, the programming effort is kept to a minimum
and a clear overview and easy maintainability are guaranteed due to the configuration
files and the signal flow visualization. Conveniently, writing test cases in Telemotive Test
Automation likewise requires minimal programming effort, since the TTA syntax
corresponds to the Python syntax. Moreover, it also provides an elaborate reporting
system with clear visualization and enables intuitive handling for testers with the HTML5
GUL.

Finally, it is important to mention that Magna Telemotive’s solutions are not bound to the
automotive industry, but can be used in any digitized machine.

AUTOMATED TESTING O D HMIWITH TTA

About the authors:

Manuel Zimmermann is a graduate computer scientist (M. Sc.) with focus on image
processing and computer graphics. As a senior software engineer at MAGNA Telemotive,
he has many years of experience in the field of software architecture for automotive HMI
development. Another focus is the development of image processing algorithms and
programming in the augmented reality (AR) environment.

Rebekka Haisch is a graduate industrial engineer (M. Sc.) and Product Manager of the
Software Solutions division at MAGNA Telemotive. She is responsible for the strategic
orientation of the division and the further development of Telemotive Test Automation and
other products based on market requirements. Her goals also include digitizing
companies, for example, through automated rather than manual testing. She holds the
Professional Scrum Master certification and has experience in both Agile Development
and Agile Management.

Derek Sellin is a graduate aerospace engineer (M. Sc.) with additional master and
doctoral level business studies qualifications. In his capacity as Vice President of
Marketing at Rightware, he leads product marketing as well as ecosystem development
through the Kanzi Partner Program. His technology-industry background includes
strategic planning, ecosystem management, and marketing leadership at Intel, Nokia,
Symbian, and Broadcom in the domains of telecommunications networks, semiconductor
platforms, operating systems, and Ul frameworks.

A MAGNA
‘u RIGHTWARE

DRIVING EXCELLENCE.
INSPIRING INNOVATION.

